«
Python numpy ndarray介绍
myluzh 发布于
阅读:439
Python
0x01 ndarray属性
属性名字 |
属性解释 |
ndarray.shape |
数组维度的元组 |
ndarray.ndim |
数组维数 |
ndarray.size |
数组中的元素数量 |
ndarray.itemsize |
个数组元素的长度 (字节) |
ndarray.dtype |
数组元素的类型 |
0x02 ndarray形状
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
b = np.array([1,2,3,4])
c = np.array([[[1,2,3], [4,5,6]],[[1,2,3], [4,5,6]]])
a.shape
Out[3]: (2, 3)#二维数组
b.shape
Out[4]: (4,)#一维数组
c.shape
Out[5]: (2, 2, 3)#三维数组
0x03 ndarray类型
名称 |
描述 |
bool_ |
布尔型数据类型(True 或者 False) |
int_ |
默认的整数类型(类似于 C 语言中的 long,int32 或 int64) |
intc |
与 C 的 int 类型一样,一般是 int32 或 int 64 |
intp |
用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64) |
int8 |
字节(-128 to 127) |
int16 |
整数(-32768 to 32767) |
int32 |
整数(-2147483648 to 2147483647) |
int64 |
整数(-9223372036854775808 to 9223372036854775807) |
uint8 |
无符号整数(0 to 255) |
uint16 |
无符号整数(0 to 65535) |
uint32 |
无符号整数(0 to 4294967295) |
uint64 |
无符号整数(0 to 18446744073709551615) |
float_ |
float64 类型的简写 |
float16 |
半精度浮点数,包括:1 个符号位,5 个指数位,10 个尾数位 |
float32 |
单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位 |
float64 |
双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位 |
complex_ |
complex128 类型的简写,即 128 位复数 |
complex64 |
复数,表示双 32 位浮点数(实数部分和虚数部分) |
complex128 |
复数,表示双 64 位浮点数(实数部分和虚数部分) |
python numpy ndarray