Myluzh Blog

Python pandas 数据结构-DataFrame

2023-7-21 myluzh Python

0x00 关于DataFrame DataFrame是一个类似于二维数组或表格(如excel)的对象,既有行索引,又有列索引 行索引,表明不同行,横向索引,叫index,0轴,axis=0 列索引,表名不同列,纵向索引,叫columns,1轴,axis=1 0x01 创建一个dataframe import pandas as pd import numpy as np # 创建一个ndarray,10行5列学生成绩 score = np.random.randint(40, 100, (10, 5)) # 变成dataframe格式 subjects = ['语文', '数学', '英语', '科学', '政治'] stu = ['学生' + str(_) for _ in range(score.shape[0])] # ['学生0', '学生1', '学生2', '学生3', '学生4', '学生5', '学生6', '学生7', '学生8', '学生9'] # index是行索引,columns是列索引 data = pd.DataF...

阅读全文>>

标签: python pandas 数据结构 dataframe

评论(0) (540)

Python pandas 数据结构-Series

2023-7-21 myluzh Python

0x00 介绍 Series是一个类似于一维数组的数据结构,它能够保存任何类型的数据,比如整数、字符串、浮点数等,主要由一组数据和与之相关的索引两部分构成。 0x01 Series import pandas as pd import numpy as np # 直接通过数组创建 a = pd.Series(np.arange(9)) # 通过数组+指定索引创建 b = pd.Series([1.2, 2.9, 3.8, 4.7], index=[1, 2, 3, 4]) # 通过字典创建 c = pd.Series({ "red": 10, "blue": 20 }) # 通过索引获取数据 print(a[3]) # 3 print(b[2]) # 2.9 print(c['red']) # 10 # 获取索引 print(c.index) # Index(['red', 'blue'], dtype='object') # 获取值 print(c.values) # [10 20]

阅读全文>>

标签: python pandas series

评论(0) (445)

Python numpy 矩阵与向量

2023-7-20 myluzh Python

0x01 矩阵与向量 (1)矩阵 矩阵(matrix)和array的区别矩阵必须是2维的,但是array可以是多维的。 如下图,这个是 3x2 矩阵,即3行2列。如m为行,n 为列,那么 mxn 即 3x2。 矩阵的维数即行数x列数,矩阵元素(矩阵项): Aij 指第 i 行,第j列的元素. (2)向量 向量是一种特殊的矩阵,讲义中的向量一般都是列向量,下图展示的就是三维列向量(3x1)。 0x02 加法和标量乘法 (1)矩阵的加法: 行列数相等的可以加。例: (2)矩阵的乘法: 每个元素都要乘。例: 组合算法也类似 0x03 矩阵向量乘法 矩阵和向量的乘法如图: mxn 的矩阵乘以 nx1 的向量,得到的是 mx1 的向量。 例如: 1*1+3*5 = 16 4*1+0*5 = 4 2*1+1*5 = 7 矩阵乘法遵循准则: (M行, N列)*(N行,L列) = (M行,L列) 0x04 矩阵乘法 (1)介绍 mxn 矩阵乘以 nxo 矩阵,变成 mxo 矩阵 确保第一个矩阵的列数等于第二个矩阵的行数,否则无法相乘。 举例:比如说现在有两个矩阵 A 和 B,那 么它们的乘积就可以表示为图中所示的形式。...

阅读全文>>

标签: python numpy 矩阵 向量 np.matmul np.dot

评论(0) (537)

Python numpy 数组间运算与广播机制

2023-7-20 myluzh Python

0x01 数组与数运算 import numpy as np arr = np.array([[1, 2, 3, 2, 1, 4], [5, 6, 1, 2, 3, 1]]) """ arr + 1 array([[2, 3, 4, 3, 2, 5], [6, 7, 2, 3, 4, 2]]) arr / 2 array([[0.5, 1. , 1.5, 1. , 0.5, 2. ], [2.5, 3. , 0.5, 1. , 1.5, 0.5]]) """ # 可以对比python列表的运算,看出区别 a = [1, 2, 3, 4, 5] """ a*3 Out[3]: [1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5] """ 0x02 数组与数组运算 数组在进行矢量化运算时,要求数组的形状是相等的。当形状不相等的数组执行算术运算的时候,就会出现广播机制,该机制会对数组进行扩展,使数组的shape属性值一样,这样,就可以进行矢量化运算了。下面通过一个例子进行说明: import numpy as np ...

阅读全文>>

标签: python numpy

评论(0) (475)

Python numpy ndarray运算

2023-7-20 myluzh Python

0x01 逻辑运算 import numpy as np # 生成40-100的10行5列数据 arr1 = np.random.randint(40, 100, (10, 5)) """ #查看下arr1 arr1 Out[3]: array([[95, 65, 74, 76, 64], [95, 62, 74, 81, 59], [48, 93, 87, 40, 63], [99, 68, 57, 95, 51], [75, 78, 43, 50, 49], [75, 74, 86, 50, 98], [62, 61, 53, 40, 73], [58, 63, 99, 76, 85], [52, 44, 65, 77, 51], [90, 74, 93, 78, 46]]) """ # 取6行开始取,每行取0-5列 arr2 = arr1[6:, 0:5] """ # 查看下arr2 arr2 Out[4]: array([[62, 61...

阅读全文>>

标签: python ndarray

评论(0) (449)

Python numpy 数组基本操作(索引与切片用法、改变形状、修改类型、去重)

2023-7-14 myluzh Python

0x01 数组索引与切片用法 import numpy as np # (2)二维数组 # 首先生成一个二维数组 arr2 = np.random.uniform(-1, 2, size=(5, 5)) """ # 查看下arr2 arr2 Out[3]: array([[ 1.05865188, 1.18597622, -0.81279676, 1.79444952, 0.71910054], [-0.62385763, -0.61713265, 0.94918552, -0.24394799, 1.81343914], [-0.71354709, -0.93964984, 0.96237785, 1.23973639, 0.11628672], [ 0.02623292, 1.68481857, -0.79207649, 0.79625302, -0.32104851], [ 0.75240426, 0.15582726, -0.87529045, -0.28858853, 0.01173709]]) # 只要...

阅读全文>>

标签: python numpy 数组

评论(0) (454)