Python邮件发送例子 Python

python邮件发送案例 import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText class AutoEmail: def __init__(self): self.__sende...
myluzh 发布于 

Python pandas 数据结构-DataFrame Python

0x00 关于DataFrame DataFrame是一个类似于二维数组或表格(如excel)的对象,既有行索引,又有列索引 行索引,表明不同行,横向索引,叫index,0轴,axis=0 列索引,表名不同列,纵向索引,叫columns,1轴,axis=1 0x01 创建一个da...
myluzh 发布于 

Python pandas 数据结构-Series Python

0x00 介绍 Series是一个类似于一维数组的数据结构,它能够保存任何类型的数据,比如整数、字符串、浮点数等,主要由一组数据和与之相关的索引两部分构成。 0x01 Series import pandas as pd import numpy as np # 直接通过数组创建 a = pd.Series(np.arange(9)) # 通过数组+指定...
myluzh 发布于 

Python numpy 矩阵与向量 Python

0x01 矩阵与向量 (1)矩阵 矩阵(matrix)和array的区别矩阵必须是2维的,但是array可以是多维的。 如下图,这个是 3x2 矩阵,即3行2列。如m为行,n 为列,那么 mxn 即 3x2。 矩阵的维数即行数x列数,矩阵元素(矩阵项): Aij 指第 i 行,第j列的元素. (2)向量 向量是一种特殊的矩阵,讲义中的向量一般都是列向量...
myluzh 发布于 

Python numpy 数组间运算与广播机制 Python

0x01 数组与数运算 import numpy as np arr = np.array([[1, 2, 3, 2, 1, 4], [5, 6, 1, 2, 3, 1]]) """ arr + 1 array([[2, 3, 4, 3, 2, 5], [6, 7, 2, 3, 4, 2]]) arr / 2 array([[0.5, 1....
myluzh 发布于 

Python numpy ndarray运算 Python

0x01 逻辑运算 import numpy as np # 生成40-100的10行5列数据 arr1 = np.random.randint(40, 100, (10, 5)) """ #查看下arr1 arr1 Out[3]: array([[95, 65, 74, 76, 64], [95, 62, 74, 81, 59], ...
myluzh 发布于 

Python numpy 数组基本操作(索引与切片用法、改变形状、修改类型、去重) Python

0x01 数组索引与切片用法 import numpy as np # (2)二维数组 # 首先生成一个二维数组 arr2 = np.random.uniform(-1, 2, size=(5, 5)) """ # 查看下arr2 arr2 Out[3]: array([[ 1.05865188, 1.18597622, -0.81279676, 1...
myluzh 发布于 

Python numpy 生成随机数组(正态分布与均匀分布) Python

0x01 什么是正态分布 正态分布是一种概率分布。正态分布是具有两个参数u和o的连续型随机变量的分布,第一参数u是服从正态分布的随机变量的均值,第二个参数o是此随机变量的方差,所以正态分布记作N(μ,σ)。 0x02 生成正态分布的随机数组 import numpy as np import matplotlib.pyplot as plt # 生...
myluzh 发布于 

Python numpy 生成01数组、固定数组 Python

0x01 生成01数组 import numpy as np # 生成4行6列0数组 ones = np.ones([4, 6]) """ 查看下zeros Out[3]: array([[0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0.], [0., 0., ...
myluzh 发布于 

Python numpy ndarray介绍 Python

0x01 ndarray属性 属性名字 属性解释 ndarray.s...
myluzh 发布于